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1. Introduction

Tiku [14], [15], [16] aod Tiku, Rai & Mead [18] developed new
statistics, quite different from the well-known Kolmogorov-Smirnov
and Shapiro-Wilk statistics, for testing an assumed distribution and,
in particular, for testing uniformity, normality, exponentiality and
log-normality. The rationale behind these statistics is as follows :

Consider testing the null distribution of the type

•• > (^> .-(1.1)
the location and scale parameters (x and a are not known but the
functional formfo is completely specified.

Let Xl,X2,..,Xn •••(1.2)
be a random sample supposedly from (1.1) and

Xi,X2...,X„ ...(1.3)

be the ordered sample obtained by arranging (1.2) in ascending order
of magnitude.

, Xr^+2, •••(1.4)

be the censored sample obtained by censoring (removing) n smallest
and r2 largest observations from (1.3). Let ao be the maximum
likelihood estimator, or an estimator which is identical, at least
asymptotically, to the maximum likelihood estimator (modified
maximum likelihood estimator for example, Tiku, [11], [12], [13] and
Tiku &Stewart, [19], oftr calculated from the censored sample (1.4),

* Most of this work was done when the senior ^ufhor was on his sab-
batical leave at theI.A.R.S. (I.C.A.R.), New Delhi,
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and let a bs the maKimum likelihood estimator of a calculated from
the complete sample (1.3), equivalently (1.2). The statistic for testing
Ho is defined as

r=/i(a(j/^)> ...(1.5)
where/2 is a constant chosen to make £(r).==?!l. It is easy to show
that for fixed ?,=ri/« and g2=''"2/«,Jhe asymptotic null distribution
of T is normal (Tiku, [16]). Since a is more sensitive to departures
from the null distribution Ho than a, due to the presence of the
dominating end-observations in a, the statistic T is sensitive to
changes, particularly in the tails, in/fo. The statistic Tcan, parti
cularly, be used for testing suspected outliers; see Tiku [17].

For testing exponentiality, Tiku, Rai & Mead [18] choose ri=0
and r2=[.5+|n] which gives T^, among all the other choices of n
and r2 (a) almost the maximum power against a wide class of non-
exponential distributions and (6) makes its null distribution converge
to normality rapidly (eflfectively for «>15). In this paper, we give a
method for improving the statistic for testing exponentiality. The
improved statistic is not only more powerful than but converges
to normality much faster.

2. Testing Exponentiality

For testing the exponential distribution

Ho : (IM exp {-(x—0)/a}, 0<x<co, ...(2.1)

the statistic (Tiku, Rai & Mead, 1974)
r£=CTo(r)/cr, r=['5 + i«], ...(2 2)

^ where
n—r

'cir) ={J^Xi+rXn-T—nXiy (n—r—l),
1=1

\

I

and

^
f=l j=l /=!

E{ac) = o and V(cT,)=>G^I{n-r-l). The null distribution of
y = {{jt—r-\)l{n-l)}TE is Beta distribution B(a, b)

{1/P(fl, b)} y"-^ 0<j<l, ...(2.4)
witha=n —r~l and Z)=r; see Tiku, Rai & Mead [18]. The null
distribution of converges rapidly to a normal distribution with

mean E{Tg)=l and variance V{Tg)=rln{n-r-l). ...(2.5)
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To improve upon the above statistic we take note of the fact
that for each value of r= 1,2,3, provides a test for exponen-
tiality, although with different values of the power. We, therefore,
consider defining a test-statistic in terms of an appropriate linear
combination of the estimators cTc(f), r= 1,2, 2, of a despite
the fact that they are not independent. Consider the linear combi
nation with coefficients inversely proportional to the variances, i.e.,

n—2 n-2

Z=^(,n-r- lK(r)=2 ^ ... (2.6)
r=l r=l

ImprovedStatistics: The improved statistics for testing expo-
nentiality are defined

U-

n-2

. _ I
ft — ^

1=1 1=1

(e unknown)...(2"7)

^(n-i)Xi
1=1
n

1=1 1= 1

small and large values indicate non-exponentiality. Note that is
location and scale invariant, and Uo is scale invariant.

Theorem 1. The distribution of u=iU is the same as the distri
bution of the mean of («—2) independently and identically distribut
ed (iid) uniform (0,1) variates and is given by

n—1

4

i7o= ^ (fl--=0); ...(2.8)

r=0
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i!

ij

Equivalently, the cumulative probability function

r=0 ij
.1.

for—^ z=0,l, ,n—3. ...(2.10)

Proof; It is easy to show that

n—2 n-r-1 I

^ Di,bi=(n-i)[Xi+i-Xi) •
r=l /=1 1
n-2 j|

=^(n-i-l)i)<? ...(2.11)
1=1

ii
Therefore, 5

n I; n—2 n-r—1 «—1

i=l |r=l /=1 1=1
I!

ji n-l
It is well known that m=Dil1x Du i=\,2, n—\, are jointly

!; '=1
distributed as («— 1) spacingsjl generated by (n—2) order statistics of
a random sample from uniforni (0,1) distribution, f{u)—\, 0<m<1;
see Lehmann [3], Seshadri, Csprgo &Stephens [6] or Karlin [I], But

ij

then S is the (n—r—I)tli ordered observation in a sample of
-1=1 •

;; n-2.»-r-l
size (n—2) from the Uniform (0,1), and S (Swi) is the sum of the

; r=l 1=1

(«—2) ordered observations iin a sample of size («—2). This distri
bution is the same as the distribution of (n—2) iid random variables

;; n

from Uniform (0,1). Thedistribution of u=ZI(^ Xi—nXi)(n—2) is,
ii '=1

therefore, the same as the distribution ofthe mean of(«—2) iid
Uniform (0, 1) given by equation (2.9); see Kendall &Stuart [(2),
p. 258].

Theorem 2. The distribution of uo=Wo is the same as the
distribution of the mean of («^1) I'lW Uniform (0,1) variatcs.
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Proof : The proof follows exactly on the same lines as above.
The distribution of uo and its cumulative probability function are
given by (2.9) and (2.10), respectively, with n replaced by «+l.

It is well known that the distribution of the mean of iid

Uniform (0,1) random variables tends to normality very rapidly.
The distribution of U is therefore normal, effectively for n>5, with

E{U)=\ and 7(C/)=l/3(«-2), ...(2.13)

and the distribution of Uq is normal, effectively for h^5, with

E{Uo)=\ and F(C^o) = l/3(72-l). ...(2.14)

For example for Uo we have the following values of the exact
and approximate values of the percentage points :

Sample Size n

Upper %
points

5 7 11 21

Exact Approx Exact Approx Exact Approx. Exact Approx.

10

5

1

1.376

1.477

1.650

1.370

1.475

1.672

1.306 1.302

1.389 1.388

1.536 . 1.548

1.236

1.301

1.419

1.234

1.300

1.425

1.166 1.165

1.213 1.212

1.299 1.300

It is clear that the normal approximation is adequate for »^5.

Power Comparison : 1 he values of the power of U for several
non-exponential distributions were compared with the corresponding
values for the statistic (Tiku, Rai & Mead, [8]), and Shapiro &
Wilk [8] statistic

n

W=n{x-XxYI{n- ...(2.15)

1=1

The distribution of W is not known but Shapiro & Wilk [8]
give simulated percentage points.

The estimated values (based on 2000 Monte Carlo runs) of the
power are given in Table I. The sum of the two entries (lower and
upper) in the table determines the power of a two-tailed test of size
2a%. The statistic U is generally more powerful than W against
distributions with skewness \/j3i>2 and slightly less powerful against
distributions with v'Pi<2 (values of \/Pi are given in Shapiro, Wilk
& Chen, 1968). However, U is more powerful than T^.
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The statistic Uo is more powerful than (Tiku, Rai and

Mead, [18]) and, on the whole, slightly more powerful than Kolmo-

gorov-Smirnov type statistics D and D; see Lilliefors [4], Srinivasan
[9] and Schafer, Finkelstein & Collins [5], For example, we have the
following values of the power for a two-tailed test of size 5% :

Alternative
n==10 n==20

Distribution

Dn
1

Uo Dn TEo

Log normal, o=-4 0.90 0.95 0.64 0.94 1.00 0.98 0.96 1.00

a=.8 .12 .16 .09 .17 .25 .30 .11 .26

a--==2.0 .67 .61 .64 .69 .90 .89 .91 .93

o=2.4 .81 .77 .80 .83 .97 .97 .97 .98

Chi-square (v=l) .30 .25 .31 .33

CO

.44 .4? , .57

3. Multi-Sample Generalised Statistics

Let Xji, Xj2, ,Xjn , j=l, 2,.

be k independent random samples, and

,k,

j^in. ! j 'Ij 2, , k. ...(3.1)

be the corresponding k ordered samples. We want to test that these
samples come from k exponential populations

(1/aO exp 0^<x<oo (;=1, 2, k). ...(3.2)

Case I: For Ofs not known and ct/s not equal, the generalized
statistic is

k . k

U** ={l/(iV-2^)} ^ («i-2) Ui, ^ ...(3.3)
;=I /=!

where Uj is the statistic U (equation, 2.7) calculated from the yth
sample, j=\,2,...,k. The null distribution of is given by (2.9)
with (h—2) replaced by (TV—2/c). For n<>5 and /c>2, this distribu
tion is very closely approximated by a normal distribution with

E{U**)=\and V{U**)=\i'i{N-2k). ...(3.4)
The corresponding generalized statistic is of the type

(1//C) ^ T„{j),
7=1

but the exact distribution of is not known ; see Tiku [15].

E ~
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TABLEI

ValuesoftbePowerofW,andUforLowerandUpperaPercentage
Points

Alternative
Distribution

a
n

fVTEU

LowerUpperLowerUpperLowerUpper

Chi-square2.510O.ll?O.CO0.22-0.000.22O.CO
(v=l)20.^8.00.39.00.49.00

510.26.01.31.01.31.01
20.39.00.49.00.59.00

Chi-square2.510.01.07.01.05.01.06
(v=3)20.00.10.00.08.00.10

510.01.12.02.09.02.11
20.01.18.01.14.01.19

Chisquare2.510.00.12.01.07.00.10
(v=4)20.00.22.00.14.00.20

510.01.17.01.12.01.17
20.00.31.00.23.00.34

Weibull2.510.43.00.49.CO.53.00
(c=i)20.73.00.80.00.86.00

510.54.00.60.00.63.00
20.82.00.87.00.91.00

Weibull2.510.00.26.00.16.00.24
(c=2)20.00.63.00.49.00.63

510.00.38.00.27.CO.36
20.00.75.00.61.00.78

Beta(2,1)2.510.00.72.CO.56.00.67
20.00.98.00.93.00.98

510.00.82.00.70.00.78
20.001.00.00.97.00.99

Half-normal2.510.00.11.00.08.00.10
20.00.21.00.15.00.17

510.00.18.01.14.01.17
20.CO.33.00.25.00,.30

Half-Cauchy2.510.40.00.30.00.41.00
20.68.00.56.00.67.00

510.47.01.39.01.48.01
20.74.00.64.00.74.00

Log-normal2.510.67.00.72.00.74.00
(a=2.4)20.93.00.96.00.98.00

510.77

b
o

.81.00.81.00
20.96.00.97.00.99.00
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