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1. INTRODUCTION

Tiku [14], [15], [16] and Tiku, Rai & Mead [18] developed new
statistics, quite different from the well-known Kolmogorov-Smirnov
and Shapiro-Wilk statistics, for testing an assumed distribution and,
in particular, for testing uniformity, normality, exponeatiality and
log-normality. The rationale behind these statistics is as follows :

Consider testing the null distribution of the type

Ho: %fo ("_“ ); (L)

g

functional form fj is completely specified.

|
‘ the location and scale parameters 1 and ¢ are not known but the
|
Let X1, X2,.. , Xn ...(1.2)

be a random sample supposedly from (1.1) and

X1y X2...y Xn ..(1.3)

be the ordered sample obtained by arranging (1.2) in ascending order
of magnitude.

Let CHEED CFERD A o (1.4)

be the censored sample obtained by censoring (removing) r1 smallest
and r; largest observations from (1.3). Let o, be the maximum
likelihood estimator, or an estimator which is identical, at least
asymptotically, to the maximum likelihood estimator (modified
maximum likelihood estimator for example, Tiku, [11], [12], [13] and
Tiku & Stewart, [19], of & calculated from the censored sample (1.4),

* Most of this work was done when the senjor author was on his sab-
batical leave at the L.A.R,S. (I.C,A,R.), New Delhi,
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and let & bz the maximum likelihood estimator of ¢ calculated from
the complete sample (1.3), equivalently (1.2). The statistic for testing
Hpy is defined as

T=h(c,/0), (1.5

where % is a constant chosen to make E(T)=%1. Itis easy to show
that for fixed ¢,=r1/n and qa=ra /n, the asymptotic null distribution
of T is normal (Tiku, [16]). Since o is more sensitive to departures
from the null distribution Ho than o, due to the presence of the
dominating end-observations in o', the statistic T is sensitive to
changes, particularly in the tails, in Ho. The statistic T can, parti-
cularly, be used for testing suspected outliers; see Tiku {17].

For testing exponentiality, Tiku, Rai & Mead [18] choose r1=0
and re=[.5+3n] which gives Ty, among all the other choices of r1
and r2 (@) almost the maximum power against a wide class of non-
exponential distributions and (b) makes its null distribution converge
to normality rapidly (effectively for n>15). In this paper, we give a
method for improving the statistic T’z for testing exponentiality. The
improved statistic is not only more powerful than T but converges
to normality much faster,

2. TESTING EXPONENTIALITY

For testing the exponeatial distribution

1o : (1/0) exp { - (x—0)/a}, 0 <x< 0, .(2.D
the statistic (Tiku, Rai & Mead, 1974)
Te=04r)fo, r=['5+1nl, -(22)
where
n—r
o) = (D Xt rXur—nis )/ e=r—,
i=1
and

o = (ixifnxl)/ (n—1), ix; =§n:x,-; . (2.3)
i=1 i=1 i=1

E{c)=0c and V(o))=02/(n—r—1). The null distribution of
y = {(n—r—1)/(n —1)}T is Beta distribution B(a, b)
{1/8(a, b)} ot (1—pP-2, O<y<l, ..(2.4)

with a=n—r—1 and b=r; see Tiku, Rai & Mead[I8]. The null
distribution of Tz converges rapidly to a normal distribution with
mean E(Tg)=1 and variance V(Tg)=r{n(n—r—1). ..(2.5)
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To improve upon the above statistic we take note of the fact
that for each value of r==1,2,3,...... » T provides a test for exponen-
tiality, although with different values of the power. We, therefore,
consider defining a test-statistic in terms of an appropriate linear
combination of the estimators o.(r), r=1,2,...... , n—2, of ¢ despite
the fact that they are not independent. Counsider the linear combi-
nation with coefficients inversely proportional to the variances, ie.,

n—2

Z—z(n—r—l)ao(r) 2 z(n~,—1)(x,+l—xl) .(2.6)

Improved Statistics: The improved statistics for testing expo-
nentiality are defined

n—2
4 Z(n—l—l)(X¢+1—X1)

‘ : U= 2Z

(;X;—nh) (n—2) (EL nX1)

(9 unknown)...(2'7)

4 ’i(n—i)Xt

2Z, —_ =1 (6 =0); . (2.8)

n

—(;’;X‘) (n—1) (ZXi) (n—1)

i=1

small and large values indicate non-exponentiality. Note that U is
location and scale invariant, and Uy is scale invariant.

Theorem 1. The distribution of u=1U is the same as the distri-
bution of the mean of (n—2) independently and identically distribut-
ed (iid) uniform (0,1) variates and is given by

é(u)—(”(n2)3), Z(—l)' (" 2)( u—nfrz)"'3 ;. (2.9)

z+1

2-,Z=0,1,...,n—3,

for1 Sus
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i
Equivalently, the cumulative probability function

Pu<o="2 Z( ("2 )( c—n—_’—z)”—z.

r—' ll

z
for—> <e< Jz,z—O,l, ...... ;n—3. -(2.10)

Proof : Itis easy to shoiv that

n—2 n-r—1 ;i
Z=l2 z Di,D =n—i) (X111 —X3)

n—2

= z(n—t—l)Df ! : we(2.11)

i=1
i!
Therefore, §

,n—2 n-—r—1 n—1

Z/( i X,—nxl) Z 2 D{/zD 212)
i=1

lr“_

It is well known that uz—D;/E Dy, i=1,2,...... , n—1, are jointly-
pooj=1

distributed as (n—1) sracings | ; generated by (n—2) order statistics of

a random sample from umform (0,1) distribution, f(w)=1, 0<u<l;

see Lehmann [3], Seshadri, Csorgo & Stephens [6] or Karlin [1]. But
n—r—1

then X% uis the (n—r—l)th ordered observatlon in a sample of

~ i=1
n=2 n—r—1

size (n—2) from the Uniform (0 1), and Z (Eua) is the sum of the
r=

(n—2) ordered observations m a sample of size (n— 2). This distri-
bution is the same as the dlstr:butlon of (n—2) iid random variables

from Uniform (0,1). The dlstrlbutlon of u—Z/(z Xi—nX1)(n—2) is,

therefore, the same as the dlstnbutlon of the mean of (n—2) iid
Unpiform (0, 1) given by equatlon (2.9) ; see Kendall&Stuart [(2),
p. 258].

Theorem 2. The dlstrxbutlon of uo=4Uy is the same as the
distribution of the mean of (n—- 1) iid Uniform (0,1) variates.
[I
J!

n
il
i
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Proof : The proof follows exactly on the same lines as above.
The distribution of #p and its cumulative probability function are
given by (2.9) and (2.10), respectively, with a replaced by n41.

It is well known that the distribution of the mean of iid
Uniform (0,1) random variables tends to normality very rapidly.
The distribution of U is therefore normal, effectively for n>5, with

E(U)=1 and V(U)=1/3(n—2), ...(2.13)
and the distribution of Uy is normal, effectively for #>3, with _
E(Uo)=1 and V(Up)=1/3(n—1). (2.14)

For example for Up we have the following values of the exact
and approximate values of the percentage points :

Sample Size n

5 7 11 ‘ 21
Upper %
points \
Exact |Approx | Exact |Approx | Exact Approx. Exact|Approx.
10 1376 1370 1306 1.302 1.236 1234 1.i166 1.165
5 1477 1475 1.389 1,388 1.301 1300 1.213 1.212
1 1.650 1,672 1.536. 1.548 1.419 1425 1.299 1.300

It is clear that the normal approximation is adequate for n2>5.

Power Comparison : The values of the power of U for several
non-exponential distributions were compared with the corresponding
values for the statistic T (Tiku, Rai & Mead, [8]), and Shapiro &
Wilk [8] statistic

W=nE—X1)2/(n—1) > (xi—F)2. ...(2.15)
2

The distribution of W is not known but Shapiro & Wilk [8]
give simulated percentage points.

, The estimated values (based on 2000 Monte Carlo runs) of the
power are given in Table I. The sum of the two entries (lower and
upper) in the table determines the power of a two-tailed test of size
20%. The statistic U is generally more powerful than W against
distributions with skewness 4/B1>>2 and slightly less powerful against
distributions with 4/B1<<2 (values of y/B1 are given in Shapiro, Wilk
& Chen, 1968). However, U is more powerful than T'p.
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The statistic U, is more powerful than TE., (Tiku, Rai and
Mead, [18]) and, on the whole, slightly more powerful than Kolmo-

gorov-Smirnov type statistics D and ]3; see Lilliefors [4], Srinivasan
[9] and Schafer, Finkelstein & Collins [5]. For example, we have the
following values of the power for a two-tailed test of size 5% :

n=10 n=20
Alternative
Distribution | ~ 1 . — A~
Dy | Dy TEo Uy | Dy D, | TE, | U,
Log normal, 6="4 090 0695 064 094 1.00 098 096 1.00
c=.8 A2 .16 .09 17 .25 30 A1 .26
=220 .67 .61 .64 .69 .90 .89 91 .93
oc=2.4 .8l 77 . 80 .83 .97 97 97 .98
Chi-square (v=1) .30 .25 .31 33 .48 44 49 57
3. MuLTtI-SAMPLE GENERALISED STATISTICS
Let Xily Xj2yer.en. SXin_ s j=1, 2,..... .k,
J
be k independent random samples, and
Xty Xppeoe s Xin 5 J=1, 2y Ky (3.1)

be the corresponding k ordered samples. We want to test that these
samples come from & exponential populations

(1/c3) exp {—(.x—ﬁ,)/o',}, fi<x<oo (j=1, 2,...... » k). ...(3.2)

Case I: Por ¢;’s not known and ¢,’s not equal, the generalized
statistic is

k - k
UB ={UN-20) > W=D Up N= > ny (39
j=1 i=1

where U, is the statistic U (equation, 2.7) calculated from the jth
sample, j=1, 2,..., k. The null distribution of $U** is given by (2.9)
with (n—2) replaced by (N—2k). For n;225 and k2>2, this distribu-
tion is very closely approximated by a normal distribution with
E(U**)=1 and V(U**)=1/3(N—2k). ..(3.9)
The corresponding generahzed T statistic is of the type

2= (1K) z Te(J),

but the exact distribution of T *# is not known ; see Tiku [15].




00

66°

00 L6 00 96° (174
00 18 00 I8 00° L oI S
00’ 86° 00 96’ 00° £6' 0z (h'z=2)
00° bL 00’ /A 00 LY 01 $'T  [ewlou-So
0o’ bL 00° $9° 00 bL 0T
I0° 8p* 10° 6% 10° Ir oI S
00" L9 00 9" 00" 89° 07
00 1374 00 o¢ 00 ob or $'Z  Aqaned-jleH
o 00 ST 00 €€ 00 0z
Ly {1 N 4 & 10° sr 00’ of S
Lr 00 4% 0o (A 00 (174
or 00’ 80" 00° n 00 oI $'Z  [emIOU-JIRF]
66° 00’ L6 00 00T 00 0T
8L 00’ oL 00° 8 00’ or s
86' 00 £6' 00 86° 00 0z
Lo 00 9s° 0y T 0o’ o1 ST (1°7) e1eg
8L 00 19° 00 sL 00 (174
9¢’ 0y Lz 00 8¢’ 00" oI S
£9° 00" 6% 00 £€9° 00’ 0z (z=92)
v 00" 9r 00 9z 00’ o1 $T [Ingam
00 16" 00 L8 00’ 43 0z
00’ £9' 00 09" 00 ps* o1 S
00 98’ 00’ 08’ 00’ A (174 (¥=9)
00 €5 00 6 00 1 oI 4 fInqrap
123 00 €T 00" ¢ 00 0z
LT 10° AN 10° L 10° or S
oz 00 128 00’ w 00’ (114 (r=4)
or 00 L0 10° (4% 00’ i) ST arenbs g
61 10° 128 10° 81" 10’ 0C
I 70 60’ 0 48 10° oI S
or 00’ 80° 00 or 00 0z (g=4)
90" 10° SO 10° L0 10° o1 ST srenbs-lypH
00 65" 00’ 6% 00° 6¢ (174
10° Ie 10 1€ 10° (T4 oI S
00’ 6b 00" 6¢ 00 :7A oz (1=4)
03°0 0 000" TTO 00 L4LI'0 oI $'T a1enbs-1qD
daddp) | aamo | 42ddp) | somoT | saddp | om0

u uoynqQuuSiq

» a1 DUy
n qy M
sjuroq

odejuntsg » 1addn pue 1m0 10§ ) pue Ty <A\ 30 JDM0g aq} Jo sanpep

I 3714VL

SOULSILVIS TVYNLTNOMYOV 40 ALFID0S NYIAN] HHIL 40 TYNianor 9%




TESTS OF EXPONENTIALITY IN SINGLE-AND MULTI-SAMPLE SITUATIONS 47

Case II ; For 0;s known (say 6;=0, j=1, 2, ,k)and o;'s not
equal, the generalized statistic is

k k
Up**={1[(N—k)} Z(nj—l)Ujo, N= znn -+ (3.5)
j=1 i=1

where Uj, is the statistic Up (equation, 2.8) calculated from the jth
(j=1, 2,..., k) sample (3.1). Thz null distribution of $ Uo** is given
by (2.9) with (n—1) replaced by (N—k). For n;>»>4 and k2>2, this
distribution is adequately represented by normal with

E(Up**)=1 and V(Up**)=1/3(N—k). ...(3.6)

The exact distribution of the corresponding T'j; statistic, T;** is
0
not known.

The above results seem to be very interesting because U** and
Uo™* are the only generalized statistics known so far whose exact
distributions are worked out ; see for example Wilk & Shapiro [20]
and Tiku [15].

For the other two cases, thatis, §;s unknown and oj’s equal,
and §;'s known (=0 say) and o5’s equal, the generalized U statistics
involve ordering N—k and N ohservations, respectively, that is,
ordering Xy— Xj1, and Xji, i=1, 2,...,n5, j=1,2..., k, and calculating
statistics similar to U and Up. Since N will, in practice, be large this
prospect does not seem to be attractive. However, the corresponding

generalized T statistics, TE* and Tx*, do not involve such ordering
o

and are easy to calculate, and their null distributions are Beta

distributions.

The above generalized statistics have excellent power properties
as is clear from the following table (Table II).

The T-statistic (eq. 1.5) for testing other distributions, in parti-

. cular, testing uniformity, normality and log-normality, can be

improved on the same lines as above. For example the improved T
statistic (Tiku, 1975, p. 116) for testing uniformity U(#1,02) is
: n—2

) z (Xer1— X)/(Xo ~ XD (1 —2); (3.7
. i=1

the distribution of u=3}U is the same as (2.9). However, the distribu-
tions of the improved statistics for testing normality and log normality
are difficult to work out.
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It seems posssible to define statistics similar to Tz* and U** to

test bivariate exponentiality. The statistics T, and U can also be
generalized to test exponmentiality from censored samples. This is

under investigation at the present time.

TABLE 2

Values of the Power of U** for Lower and Upper « Percentage Points

K=2 k=d
Alternative L

Distribution a my=ny=10 n,=ng=20 ny=ny=ng=ny=10

Lower | Upper | Lower | Upper Lower Upper
Chi-square 2.5 0.34 0.00 070 0.60 0.57 0.00
(v=1) 5 45 .00 79 .00 .68 .00
Chi-square 2.5 .00 .09 .00 17 .00 A5
(v=3) 5 .01 .15 .00 27 .00 23
Chi-square 2.5 .00 .16 .00 .39 .00 30
(v=4) 5 .00 .26 .00 .52 .00 43
Weibull 25 8 .00 .98 .00 ,96 .00
(c=D 5 .84 .00 .99 .00 97 .00
Weibull 2.5 .00 .45 .00 92 .00 .78
(c=2) 5 .00 .59 .00 .96 .00 87
Log-Normal 2.5 .00 .30 .00 .76 .00 .55
(o=.4) 5 .00 44 00 85 .00 .68
Log-normal 2.5 .34 .00 1.00 .00 .98 .00
(6=2) 5 .39 .00 1.00 .00 .99 .00
Log-normal 2.5 93 .00 1.00 .00 1.00 .00
(c=2.4) 5 .96 .00 1.00 .00 1.00 .00
Beta (2,1) 2.5 .00 .94 .00 1.00 .00 1.00
5 .00 97 00 1.00 .00 1.00
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SUMMARY

A method of improving Tiku’s [14] to [17] goodness-of-fit
statistics is described. Improved statistics for testing exponentiality
in single-and multi-sample situations are given explicitly and their
exact distributions obtained. The improved statistics for testing
exponentiality are shown to be more powerful than Tiku statistics
and slightly more powerful than kolmogorov-Smirnov type statistics.
For testing the exponentiality of a single sample, the improved
statistic is shown to be generally more powerful than Shapiro-Wilk
against distributions with skewness 4/81>>2 and slightly less powerful
against distributions with 4/8,<2 (v/81=2 for an exponential distri-
bution). A very interesting feature of this paper is that generalized
statistics for testing exponentiality of k independent samples with
unequal population variances are defined and the exact distributions
of these statistics are worked out. These exact distributions are shown
to be the same asthe distribution of the mean of independently
and identically distributed Uniform (0, 1) variates.
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